INICIAÇÃO CIENTÍFICA

A FUNCIONALIDADE E APLICABILIDADE DA LÂMPADA DE MOSER COM A INTRODUÇÃO DE DIFERENTES PIGMENTOS NATURAIS

Autoras: Isabella Ribeiro, Luana Felipe, Tayna Velho

Orientador: Michael Filardi Coorientador: Luiz Carlos Sartoreli Filho, Guilherme Huet Cotia, São Paulo, Brasil.

PROBLEMÁTICA

→ Como divulgar o processo de iluminação natural em garrafas PET e introduzir pigmentos naturais, visando a obtenção de lâmpadas coloridas e agregando princípios de cromoterapia?

HIPÓTESE

→ É possível obter soluções com pigmentos naturais de diferentes tonalidades a partir da refração da luz em água.

INTRODUÇÃO

→ A partir da crise elétrica de 2002 no Brasil, o mecânico mineiro Alfredo Moser teve a ideia de aproveitar garrafas PET, água e cloro como focos de luz para iluminar sua casa e seu bairro durante o dia. A ideia simples, porém criativa deu tão certo que hoje ilumina bairros carentes ao redor do mundo, beneficiando mais de 1 milhão de pessoas (BBC, 2013). A partir dessa descoberta, surgiu a curiosidade e o interesse por uma inovação sustentável com a produção de soluções pigmentosas aplicadas à lâmpada de Moser. O desejo de inová-las, poderá trazer benefícios à comunidade quando agregadas aos princípios da cromoterapia.

OBJETI

Obter soluções estáveis do ponto de vista químico, físico e biológico a partir da introdução dos pigmentos naturais, visando a preparação de lâmpadas de Moser coloridas.

METODOLOGIA

→ Etapa I - Essa etapa constou da montagem de três lâmpadas de Moser com diferentes padrões cromáticos (verde, violeta e laranja), de pigmentos naturais. O material biológico foi obtido por meio de coletas em áreas abertas do Colégio Sidarta onde foram coletadas 30g de vegetais para o preparo de soluções concentradas e diluídas com folhas de Eugenia uniflora (pitanga) e sementes de Bixa orellana (urucum) que foram trituradas e preparadas com 150 ml de água e na sequência filtradas. A solução contendo o pigmento foi diluída em 2l de água na garrafa PET, com aproximadamente 1 ml de cloro, medida obtida a partir de testes de concentração.

Etapa II - A etapa II constou da preparação de novas soluções a partir da seleção e separação de pigmentos presentes em folhas de pitangueira (Eugenia uniflora); sementes de urucum (Bixa orellana); folhas de espinafre (Spinacia oleracea) e casca de Allium cepa (cebola branca) por meio de um processo de extração por solventes. As soluções foram acondicionadas em recipientes de garrafa PET transparente de 500 ml, obtendo-se três soluções para cada tipo de pigmento extraído. Para o estudo estabilidade, as soluções foram mantidas durante um período de três semanas em locais distintos para a observação dos seguintes parâmetros: turvação; coloração; transparência e presença de microrganismos. Após a identificação da solução que apresentou maior estabilidade, essa foi submetida a observação utilizando um Arduino com sensor de luminosidade, inserido em um protópito para a obtenção de dados da refração dos pigmentos introduzidos na lâmpada.

Figura 1. Apresentação dos resultados - Etapa I - na Feira do Conhecimento 2015

Figura 2. Coleta de material vegetal realizado na etapa II

Figura 3. Preparação e seleção de material biológico na etapa II

Figura 4. Protótipo com a lâmpada de Moser colorida e sensores

Figura 5. Verificação da luminosidade no protótipo com a lâmpada de Moser

RESULTADOS

→ Os resultados indicaram variações em alguns parâmetros que foram observados nas soluções abaixo:

Figura 6. Solução Pigmentosa de Eugenia uniflora

Figura 7. Solução
Pigmentosa de sementes
de Bixa orellana

Figura 8. Solução Pigmentosa de Bixa orellana (pó)

Figura 9. Solução Pigmentosa de Allium cepa.

Figura 10. Solução Pigmentosa de Spinacea oleraceae

CONCLUSÃO

Foi utilizado um sistema eletrônico baseado no Arduíno para o monitoramento da luminosidade e verificação da efetividade da refração da luz no interior da caixa, medindo-se a luminosidade em diversos pontos. Na comparação entre o uso da ampola sem líquido e com líquido, observou-se valores de luminosidade maiores no interior da caixa com a utilização do líquido na ampola, enquanto que sem o uso do líquido, a luminosidade era maior apenas no ponto que recebia a luz diretamente (sob o buraco). Assim, a réplica proposta mostrou-se eficiente para iluminação do ambiente. Nas próximas etapas de pesquisa será avaliada a diferença de luminosidade observada no interior da caixa com o uso de diferentes soluções. Além disso, pretende-se verificar a luminosidade derivada de soluções com diferentes espectros cromáticos, com a utilização de um sensor de cor (ou com filtros de papel celofane).

BIBLIOGRAFIA

→ AZEEMI, S.T.Y. & RAZA, S.M. A Critical Analysis of Chromotherapy and Its Scientific Evolution. Evid Based Complement Alternat Med. 2005 Dec; 2(4): 481–488.

VIEIRA, J.H. Lâmpadas Moser. Anais 63° Reunião Anual da SBPC.